Journal of Organometallic Chemistry, 185 (1980) 219–230 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESIS AND NMR-SPECTROSCOPY CHARACTERISTICS OF CARBONYLHYDRIDOVANADIUM COMPLEXES STABILIZED BY OLIGOTERTIARY PHOSPHINES

UWE PUTTFARCKEN and DIETER REHDER *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (F.R.G.)

(Received July 16th, 1979)

Summary

Hydridocarbonylvanadium complexes are stabilized by the tri- and tetratertiary phosphines (L) PhP(CH₂CH₂PPh₂)₂ (p₃), MeC(CH₂PPh₂)₃ (cp₃), [Ph₂PCH₂CH₂PPhCH₂]₂ (p₄) and P(CH₂CH₂PPh₂)₃ (pp₃). The stable complexes HV(CO)₃L and the labile intermediates HV(CO)₄L have been prepared by chomatography of the anionic parent compounds on silica gel. Irradiation of HV(CO)₃pp₃ and HV(CO)₃p₄ affords *cis*-[HV(CO)₂pp₃] and *trans*-[HV(CO)₂p₄], respectively. The complexes are characterized by their IR, ¹H, ³¹P and ⁵¹V NMR spectra. A model of restricted dynamic behaviour based on the facecapped octahedron is proposed on the basis of the hydride NMR pattern. The dinuclear ligand-bridged {HV(CO)₄}₂ μ -p₄ is obtained by treatment of [Et₄N]_{2n}-[{V(CO)₄}_{2n}(μ -p₄)_n] with t-BuCl/H₂O. An improved synthesis for the [η^5 -C₅H₅-VH(CO)₃]⁻ anion is described; ¹H and ⁵¹V NMR data indicate that the local symmetry of the {VH(CO)₃} moiety is probably C_{3ν}.

Introduction

Hydrido complexes of vanadium are of interest because of their ability to transfer hydrogen to organic molecules. Thus, η^3 -allyl complexes are obtained from the reaction between HV(CO)₆ or HV(CO)₄Ph₂P(CH₂)₂PPh₂ and butadiene or isoprene [1,2]. A recent review surveys various hydride transfers to organic halogen compounds involving the anionic [η^5 -C₅H₅VH(CO)₃]⁻ [3].

Hydrido complexes derived from $HV(CO)_6$ [4] are thermally unstable unless at least two CO-groups are replaced by phosphines or arsines. Several compounds of the type $HV(CO)_4LL$, prepared from $[Et_4N][V(CO)_4LL]$ by the use of proton-active agents have been described $(LL = o-C_6H_4(ASMe_2)_2$ [5], Me_2 - $PCH_2CH_2PMe_2$ [5], $Ph_2PCH_2CH_2PPh_2$ [6], $Ph_2PCH_2PPh_2$ [2], $Ph_2AsCH_2CH_2$ - PPh_2 [2]). The complexes $HV(CO)_4Ph_2P(CH_2)_nPPh_2$ (n = 1-4) are easily accessible in good yields by ion exchange chromatography of the anionic parent compounds on silica gel [7]. We have now extended this method to complexes of tri- and tetra-tertiary phosphines. The hydrido complexes thus obtained, containing three or two CO-groups, are surprisingly stable even in solution. Their ¹H-NMR spectra suggest a fluxional behaviour related to that discussed for the isoelectronic compounds $HTa(CO)_2(Me_2PCH_2CH_2PMe_2)_2$ [8] and $[HM(CO)_2(PP)_2]^*$ (M = Cr, Mo, W) [9–12] with a mono-capped octahedral structure.

For the oligotertiary ligands employed in this work, we will use the following abrivations:

Ph₂As(CH₂)₂PPh₂, asp; Ph₂P(CH₂)_nPPh₂ (n = 1-4), p₂(n); PhP(CH₂CH₂-PPh₂)₂, p₃; MeC(CH₂PPh₂)₃, cp₃; (Ph₂PCH₂CH₂PPhCH₂)₂, p₄; P(CH₂CH₂PPh₂)₃, pp₃; generals, p_m, where *m* denotes the total number of P-atoms. The spectra of the complexes HV(CO)₄p₂(n) and HV(CO)₃p₃ were considered in two earlier reports [7,13]. They are included here in a comprehensive and partly revised presentation.

Results and discussion

$[Et_4N] [\eta^5 - C_5H_5VH(CO)_3]$

While Na₂[η^5 -C₅H₅V(CO)₃] is converted into (η^5 -C₅H₅)₂V₂(CO)₅ by strong acids [14,15], the use of moderately protonactive agents yields the hydrido complex [η^5 -C₅H₅VH(CO)₃]⁻ (I). I can be obtained from a THF/H₂O suspension [3]. We find that I is also formed in acetonitrile, from which it can be isolated in almost quantitative yields as the tetraethylammonium salt [Et₄N]-[η^5 -C₅H₅VH(CO)₃]. The complex forms an orange yellow, micro-crystalline powder which is relatively air-stable and only slightly soluble in THF. The yellow solutions in CH₃CN become dark brown during two days, and amines are generated. The IR spectrum in CH₃CN [1889s, 1775vs cm⁻¹] is about identical to that reported by Bergman et al. for [(Ph₃P)₂N][η^5 -C₅H₅VH(CO)₃] [3].

Fig. 1. 23.66 MHz ⁵¹V NMR spectrum (A) and 270 MHz ¹H NMR spectrum (B) of $[\eta^5-C_5H_5VH(CO)_3]^-$. Presumed local symmetry of the $\{HV(CO)_3\}$ moiety is $C_{3\nu}$.

Although the absorption band at 1775 cm⁻¹ is comparatively broad and may thus hide two accidentially degenerate absorptions (3:4 geometry), there is strong evidence for axial symmetry $(3:3:1 \text{ geometry}, \text{ i.e. } C_{3u}$ for the {VH(CO)₃} moiety) from the NMR spectra. As shown in Fig. 1, the ⁵¹V NMR spectrum exhibits a doublet $[\delta(^{51}V) = -1730 \text{ ppm}, ^{1}J(^{51}V - ^{1}H) = 20.3 \pm 0.2 \text{ Hz},$ half-width (1 H-decoupled) = 60 Hz]. The 1 H NMR spectrum shows a broad signal for the H⁻ corresponding to the unresolved eight-line system $[\delta({}^{1}H) -$ -6.33 ppm, half width ca. 163 Hz] characteristic of a dipolar nucleus coupling with a quadrupolar nucleus $[I(^{51}V) = 7/2]$ at a point where coupling is not averaged to zero by rapid quadrupolar relaxation [16]. Hence, to allow scalar coupling, relaxation times have to be sufficiently long. This is accomplished only by a small electric field gradient tensor, i.e. sufficiently high symmetry. The local symmetry is therefore very probably $C_{3\nu}$; the structure of the anion I thus differs from that of the complex η^5 -C₅H₅WH(CO)₃, for which a square pyramidal ligand arrangement (local C_s symmetry) with rapid exchange of CO and H^- sites via an intermediate of 3:3:1 geometry was proposed [17].

Mononuclear carbonylhydridophosphine complexes

Preparation and properties

The preparations of the neutral species of general formula $HV(CO)_n p_m$ were carried out according to Scheme 1 below.

SCHEME 1

$$[V(CO)_{6}]^{-} + p_{m} \xrightarrow{hv} [V(CO)_{5}p_{m}]^{-}$$

$$hv cis-[V(CO)_{4}p_{m}]^{-} \xrightarrow{hv} mer-[V(CO)_{3}p_{m}]$$

$$Hv(CO)_{4}p_{m} + V(CO)_{3}p_{m}$$

$$Hv(CO)_{4}p_{m} + V(CO)_{4}p_{m}$$

Synthesis and spectroscopic characteristics of the parent compounds $[Et_4N]$ -[V(CO)_np_m] have been described in ref. 18 (n = 3, 4; p_m = cp₃, pp₃), [19] ($n = 4, p_m = p_2; n = 3 \text{ or } 4, p_m = p_4$), and [20] ($n = 3, 4; p_m = p_3$).

The initial step for the conversion of the anionic species into the neutral hydrido complexes is the replacement of tetraethylammonium by hydrogen in an ion exchange process with participation of the silanol groups of the silica gel carrier [7]. For monosubstituted complexes [Et₄N][V(CO)₅p_m], this reaction is slow. If there are free phosphorus atoms available in the initially formed hydrido complexes, the compounds can be stabilized by CO-elimination and chelation. This second step is fast for the reaction HV(CO)₅p_m \rightarrow HV(CO)₄p_m and slow (several hours to days at room temperature) for HV(CO)₄p_m \rightarrow HV(CO)₃p_m. For that reason, no monosubstituted hydridocomplex and no pure HV(CO)₄p_m with m > 2 could be isolated. For preparation of the trebly-

substituted complexes $HV(CO)_{3}p_m$ (m = 3, 4), it is unnecessary to obtain pure starting reagents, since a mixture of $[V(CO)_4 p_m]^-$ and $[V(CO)_3 p_m]^-$ will afford the same final product. For m = 4, the conversion $HV(CO)_3 p_m \rightarrow HV(CO)_2 p_m$ is ineffective. However, UV irradiation of $HV(CO)_3 p_4$ and $HV(CO)_3 p_3$ yields trans- $HV(CO)_2 p_4$ and cis- $HV(CO)_2 p_3$, respectively.

There is an increase in stability with a decrease in the number of CO groups (and an increase in the number of ring systems in which vanadium is incorporated). While the $HV(CO)_{4}p_{2}(n)$ compounds are rather sensitive to oxygen and tend to decompose in solution to yield the paramagnetic $V(CO)_{4}p_{2}(n)$ [6], the trisubstituted species can be refluxed in THF without degradation, and crystal-line powders of $HV(CO)_{2}p_{4}$ and $HV(CO)_{2}p_{3}$ may be exposed to air for about a minute without visible decomposition.

Spectra

NMR data, including those for $[\eta^5-C_5H_5VH(CO)_3]^-$ and $\{HV(CO)_4\}_2\mu$ -p₄ (see next section), are listed in Table 1. The complexes are arranged in order of

TABLE 1

¹H, ³¹P AND ⁵¹V NMR DATA ON CARBONYLHYDRIDOVANADIUM COMPLEXES

Complex	δ(⁵¹ V) ^α (ppm)	δ(³¹ p) ^b (ppm)	¹ H NMR data (hydride region)			
			Multiplicity (Spin System)	$^{2}J(^{1}H-^{3}P)$ (Hz)	δ(¹ H) (ppm)	
in ⁵ -C ₅ H ₅ VH(CO) ₃] ⁻ (I)	-1730 ^c				6.33	
HV(CO) ₄ PP ₃ (II)	e	+87, +76	triplet	25.0	-5.32	
			(A ₂ X)			
HV(CO) ₄ cp ₃ (III)	-1608	e	triplet	26.1	5.20	
			(A ₂ X)			
{HV(CO)_4 }= 12-P4 (IV)	1685	+68	[triplet] f	[23.0, 27.0]	5,20	
			([ABX])			
HV(CO)4asp ^g	1663	+72	doublet	25.9	5.08	
-			(AX)			
HV(CO) ₄ p ₂ (1-4) ^g	1555	+12 to +72	triplet	21.9 to 26.7	-4.91 to	
	1690		(A ₂ X)		5.15	
HV(CO)3P4(V)	1665	+96,+84,+80	[quartet] ^{f, k}	29.2, 21.4, 32.1	5.08	
		-15.1, -18.0	(ABCX)			
HV(CO)3cp3 (VI)	1528 ^h	+27	broad signal	3	5,06	
		-28.0				
HV(CO) ₃ p3 ^g	1640	ca. +90 ^î	[sextet] f	39.7, 20.0	4.54	
			(A ₂ BX)			
HV(CO) ₃ pp ₃ (VII)	1690	+99, +83	[sextet] f	39.7, 20.0	-4.54	
		15.6	(A2BX)			
cis-HV(CO)2pp3 (VIII)	-1541	ca. +100 ⁱ	quartet of	36.7, 9.6	-3.84	
			doubl. (A ₃ BX)			
trans-HV(CO)2p4 (IX)		+111,+98	triplet of	113.0, 17.7	-3.62	
	-	·	tripl. (A_2B_2X)			

^a Ca. 0.1 *M* THF or THF/CH₃CN at 298 K; negative shifts are upfield from VOCl₃. ^b Ca. 0.1 *M* THF or THF/CH₃CN at 200 K relative to H₃PO₄ 80%. Positive shift values (downfield from H₃PO₄) correspond to coordinated P-atoms and are considerably broadened. Literature shift values for unligated P-atoms are: PPh₂, -12.9 to -13.5; PPh, -16.6; P, -17.4 to -17.8 [27, 28] at room temperature. The upfield shift for ca. 200 K amounts to 1.5 to 2.5 ppm. ^c Doublet, ¹J(⁵¹V-¹H) 20.3 ± 0.2 Hz. ^d Unresolved octet (see text). ^e No reliable data obtained. ^f For details see text. ^g From ref. 7. ^h Quartet, ¹J(⁵¹V-³¹P) 180 Hz. ⁱ Very broad signal. ^j Quartet in DMF-d₇ at 223 K, ²J(¹H-³¹P) (experimental) ca. 20 Hz. ^k In DMF-d₇.

Complex	ν (CO) (cm ⁻¹) in 0.01–0.02 <i>M</i> THF					
I	1889m	1775vs				
$HV(CO)_4p_2(2)$	1990s	1878vs(br)				
$HV(CO)_4p_2(3)$	1990s	1909w	1867vs	1831w		
HV(CO) ₄ p ₄	1990s	1879vs				
II	1991m	1877vs				
ш	1987m	1866vs				
IV	1990m	1877vs	1905w(sh)	1845w(sh)		
HV(CO)3P3	1927(sh)	1920s	1835(sh)	1820s		
v	1905s	1806m				
VI	1908s	1825s(br)	1810(sh)			
VII	1922m	1911m	1819vs			
VIII	1829m	1772m				
IX	1884vw	1764s				

IR-SPECIAR (CO-SIREICHING REGION) OF CARBON I DHI DRIDOVANADION COMI DUM	IR-SPECTRA	(CO-STRETCHING REGION	I) OF	CARBONYLHYDRIDOVANADIUM C	:OMPLEXES
--	------------	-----------------------	-------	---------------------------	-----------

TABLE 2

decreasing shielding of the hydride. IR-spectroscopic CO-stretching frequencies are summerized in Table 2. Except for VIII and IX, configuration assignment on the basis of IR data cannot be carried out unambiguously.

⁵¹V NMR Spectra. The ⁵¹V nucleus in the hydrido complexes is less shielded than in the anionic compounds (ca. -1760 to -1830 ppm for cis-[V(CO)₄p_m]⁻ in unstrained structures and ca. -1720 ppm for mer-[V(CO)₃p_m]⁻ [18,19]). The additional down-field shift for VI and VIII relative to that for other complexes listed in Table 1 may indicate that the bi- and tricyclic structural units in those systems span facial instead of meridional positions in the basic octahedron, thus giving rise to a threefold symmetry axis. Under ideal C_{3v} point symmetry, the vanadium-3d orbital set splits into $2e + a_1$. However, because of the chelate structures, the degeneracy of the e-orbitals will be partly raised and the lowest unoccupied state stabilized. Consequently the paramagnetic contribution to the overall shielding is increased and so the chemical shift is decreased (for a detailed discussion see e.g. ref. 21). The small ³¹P-coordination shift of VI (39 ppm) suggests ring strains resulting in hindered or diminished σ - (and perhaps also π -) overlap between vanadium and phosphorus, an effect that will add to the low-field shift of the ⁵¹V signal. Similar effects have been observed for the pairs HV(CO)₄ $p_2(1) [\delta(^{51}V) = -1593, \Delta(\delta_p) = 37 \text{ ppm}]/$ $HV(CO)_{4}p_{2}(2)$ [-1690, 82] [7] and $\eta^{5}-C_{5}H_{5}V(CO)_{2}p_{2}(1)$ [-870, 78]/ η^{2} - $C_5H_5V(CO)_2p_2(2)$ [-1110, 127] [19], and in various platinum, manganese and group VIb complexes containing ditertiary chelating phosphines [22-25].

Generally, the vanadium signals are broad and unstructured (half widths range from ca. 500 to ca. 2000 Hz, corresponding to spin-lattice relaxation times of 2 to 0.5 ms). An exception is VI, which exhibits a 1:3:3:1 quartet with a vanadium-phosphorus coupling constant of 180 Hz. This is the magnitude expected for phenylalkylphosphine complexes of vanadium [26]. The comparatively narrow lines (half width 67 Hz) again indicate axial symmetry and relatively slow relaxation processes.

¹*H NMR Spectra*. Correspondingly, the hydride resonance of VI is broad (in THF solution and at room temperature) and scalar relaxation is considerably

Fig. 2. Pseudo-rotation of H⁻ about the C_3 axis in HV(CO)₃ {MeC(CH₂PPh₂)₃} (VI).

depressed, i.e., the vanadium-hydrogen coupling constant cannot be indirectly obtained from the overall line-width. The IR spectrum of VI shows three CO-stretching frequencies (cf. Table 2), suggesting a structure in which the H⁻ ligand occupies definite positions in the polyhedron (local symmetry $\langle C_{3v} \rangle$), which are averaged out on the NMK time scale to correspond to a rotation of H⁻ about the C_3 axis as illustrated in Fig. 2. Complete decoupling of the ¹H and ⁵¹V nuclei is achieved by increasing the relaxation rate through variation of the solvent (DMF instead of THF) and lowering the temperature to 223 K. Under these conditions, a quartet [²J(¹H—³¹P) ca. 20 Hz] is observed.

The spectral data for the complexes II to IV and VII—IX indicate dynamic behaviour for these molecules. The ¹H and ⁵¹V nuclei are completely decoupled, and the pattern observed in the hydride region of the ¹H-NMR spectra reflects coupling between H⁻ and bonded phosphorus atoms only. Three consistent trends are noted for these spectra: First, shielding of the hydride decrease with increasing CO substitution (II > VII > VIII; IV > V > IX). Second, complexes belonging to the same substitution class have similar shift values and coupling constants regardless of the nature of the coordinated phosphine group (II ~ III ~ IV ~ HV(CO)₄p₂(n); V ~ VI ~ VII); this implies that ¹H NMR parameters are essentially independent of the chemical non-equivalence of the phosphorus groups bonded to vanadium. Third, the smallest ²J(HP) couplings are observed for coupling of H⁻ to a bridge-head phosphorus in a tricyclic structure and the largest to phosphorus atoms not at a bridge-head (compare VIII, VII and II).

The particular role of the bridge-head phosphorus can best be understood on the basis of a structural model which takes into account the limited dynamic behaviour of the molecule. In this model, the P atoms and CO groups are octahedrally arranged as in the geometries found for $HTa(CO)_2(Me_2PCH_2CH_2-PMe_2)_2$ [8] and $[HM(CO)_2(PP)_2]^+$ (M = Cr, Mo, W; PP = symmetrical and non-

Fig. 3. The four possible positions of H^- in *cis*-[HV(CO)₂ {P(CH₂CH₂PPh₂)₃}] on the basis of a partially dynamic model involving the pentagonal bipyramid as a transitory state (see text).

symmetrical ditertiary phosphine) [9–12]. The hydride ligand, capping octahedral faces, changes sites in the manner illustrated in Figs. 2 and 3. H⁻ positions over faces where at least one of the octahedral edutes is spanned by a $P(CH_2)_2P$ backbone of the chelate structure are excluded. The reason for that restriction is obvious when the mechanism of site exchange involves the cycle mono-capped octahedron \Rightarrow pentagonal bipyramid, as discussed for the pairwise exchange observed for $[HMo(CO)_2(Ph_2PCH_2CH_2PPh_2)_2]^+$ [10], and illustrated in Fig. 3 for the migration of H⁻ from position (a) to position (b). The possible existence of the pentagonal bipyramidal intermediate is supported by a X-ray structural investigation which showed that of $HV(CO)_4Ph_2PCH_2CH_2PPh_2$ [13] has such a structure (H⁻ is in the $VP_2(CO)_2$ plane and situated between P and CO).

Fig. 4. Experimental (above) and computed (A₂BX, half-width $\Delta \nu_{1/2} = 4.5$ Hz) 90 MHz ¹H NMR spectrum (hydride region) of HV(CO)₃ {P(CH₂CH₂PPh₂)₃} (V). An identical spectrum is obtained for HV(CO)₃ Ph₂P(CH₂CH₂PPh₂)₂.

Fig. 5. 90 MHz ¹H NMR spectrum (hydride region) of cis-[HV(CO)₂ {P(CH₂CH₂PPh₂)₃}] (VIII).

Fig. 6. 90 MHz ¹H NMR spectrum (hydride region) of trans-[HV(CO)₂ {Ph₂PCH₂CH₂PPhCH₂}₂] (IX).

The computed coupling constants listed in Table 1 are in accord with this model. Figs. 4–7 show experimental and computed ¹H NMR spectra (hydride region) for VII, VIII, IX and V. It is noteworthy that the trisubstituted complexes containing ligands as different as pp_3 and p_3 give identical spectra, whereas the line patterns for the two trisubstituted complexes of the linear phosphines p_3 and p_4 are markedly different.

Taking the hydrogen-phosphorus coupling constant in the unstrained com-

Fig. 7. 90 MHz ¹H NMR spectrum (hydride region) of HV(CO)₃ {Ph₂PCH₂CH₂PPhCH₂}₂ (V).

plexes HV(CO)₄p₂(2) [²J(HP) = 26.0 Hz] and HV(CO)₄asp [²J(HP) = 25.9 Hz] as a "normal" value, a semiquantitative prediction can be made of the spin system and approximate magnitude of the coupling constants in other hydridophosphinevanadium complexes. In our model of restricted fluxionality, the H⁻ in ditertiary phosphine complexes can migrate between six different octahedral sites, in four of which the two phosphorus atoms are mutually *cis* and *trans* to the hydride. The two remaining positions are *trans* for either phosphorus. The coupling constant in HV(CO)₄p₂ complexes (A₂X spin system) is then expressed according to J = 1/6(4t + 2c) = 26 Hz (where *t* stands for *trans* coupling and *c* for *cis* coupling). Among the various t/c pairs which are solutions to this equation, the best agreement with the available experimental ²J(HP) values is obtained for c = 60 and t = 9 Hz. As an example, the calculation of coupling constants is shown for VIII, for which the matrix

	1	2	3	4
(a)	с	t	c	t
(b)	t	С	С	t
(c)	C	t	t	t
(d)	t	С	t	t

can be constructed. (a) to (d) refer to the four allowed positions, 1 to 4 to the four P-atoms as labelled in Fig. 3. P⁴ is the bridge-head atom which is trans to H⁻ in all four cases. The three other P-atoms are equivalent, each being twice cis and twice trans to H⁻. Hence, a A₃BX spin system with J(AX) = 1/4(2t + 2c) = 34.5 Hz and J(BX) = 9 Hz (B=P⁴) arises, which is in good agreement with the computed coupling constants 36.7 and 9.6 Hz (Table 1). The calculations for the other complexes is carried out accordingly, but the agreement is not always as good as for VIII.

The ¹H NMR spectrum of V (Fig. 7) differs from the spectra of other hydrido complexes in that the signals are broadened to such an extent that the spectrum is only partly resolved. The considerable line width (ca. 10 Hz) may be caused by a still effective quadrupolar interaction on the part of the vanadium nucleus when exchange of H⁻ sites becomes sufficiently slow. The ³¹P NMR spectrum of this complex indicates three inequivalent coordinated phosphorus atoms, the lowest shielding value, +96 ppm, probably corresponding to the bridge-head phosphorus [24,27]. The computed ¹H NMR spectrum (ABCX) agrees with this. If, in a first approximation (A \approx C, see Table 1), the spin system is A₂BX [J(AX) = 31 Hz, J(BX) = 21 Hz], then good agreement between experimental ¹H NMR results and those calculated with our partially fluxional model is obtained only for a facial configuration of V.

$\{HV(CO)_2\}_2\mu - p_4(IV)$

While $HV(CO)_{4}p_m$ (m = 3, 4) complexes are unstable with respect to elimination of a third CO group, IV does not undergo any changes in solution, which suggests that there are no uncoordinated phosphorus atoms present for the formation of a bicyclic system. In keeping with this, no ³¹P signals corresponding with unligated PPh or PPh₂ groups are observed. On these grounds, IV is formu-

Fig. 8. 90 MHz ¹H NMR spectrum (hydride region) of {HV(CO)₄}₂(µ-{Pb₂PCH₂CH₂PPhCH₂}₂) (IV).

lated as a dinuclear, ligand-bridged complex. Since the starting material is insoluble in THF, IV is prepared in a t-BuCl/heptane/H₂O suspension according to

 $[\text{Et}_{4}\text{N}]_{2n}[\{\text{V}(\text{CO})_{4}\}_{2n}(\mu-p_{4})_{n}] + 2n\{\text{H}^{+}\} \rightarrow n\{\text{HV}(\text{CO})_{4}\}_{2}\mu-p_{4} + 2n\{\text{Et}_{4}\text{N}^{+}\}$

The compound forms a deep yellow, micro-crystalline powder. The ¹H NMR spectrum is shown in Fig. 8. Although the spin system is complex (AA'BB'XX' at the best) a good first order fit is obtained for a computation based on ABX. IR, ⁵¹V and ³¹P NMR spectra are similar to those for HV(CO)₄p(n) (n = 2 and 3).

Experimental

General

All procedures were carried out under nitrogen in oxygen-free solvents. A short column (10×2.5 cm, capacity approximately 0.5 mmol) filled with silica gel (Silicagel 60 purss. 70–230 mesh ASTM, Merck) was used for the ion exchange and chromatography operations. The silica gel was dried under high vacuum at room temperature for one hour and treated with N₂ and THF. For details of the irradiation and preparation of [Et₄N][V(CO)_ncp₃] and [Et₄N]-[V(CO)_npp₃] (n = 3, 4) see ref. 18, for the preparation of [Et₄N][V(CO)_np₄] and [Et₄N]_{2n}[{V(CO)₄}_{2n}(μ -p₄)_n] ref. 19. The preparation of HV(CO)₄asp, HV(CO)₄p₂(n) and HV(CO)₃p₃ was published recently [7].

IR, ³¹P and ⁵¹V NMR spectra were obtained as described in ref. 18. ¹H NMR: ca. 0.1 *M* THF or THF/CH₃CN solutions in rotating 5 mm diameter vials, Bruker WH 90 spectrometer ($[\eta^5-C_5H_5VH(CO)_3]^-$: Bruker 270) relative to TMS.

Analytical data and some of the properties of the complexes are summarized in Table 3.

		Empirical Formula (Molecular Mass)	Analysis found (calcd.) (%)					
			C	н	N	Р	v	
I	yellow powder	C ₁₆ H ₂₆ NO ₃ V	57.5	8.0	4.4		15,1	
		(331.33)	(58.00)	(7.91)	(4.23)		(15.37)	
IV yellow powder	$C_{50}H_{44}O_8P_4V_2$	59.4	4.9	-	12.4	9.9		
		(998.68)	(60.13)	(4.44)		(12.41)	(10.20)	
VI	yellow crystals	C44H40O3P3V	68.8	5.3	—	11.9	5.6	
	or powder	(760.67)	(69.48)	(5.30)		(12.22)	(6.70)	
VЦ	red needles	C45H43O3P4V	66.9	5.7		15.2	6.8	
		(806.68)	(67.00)	(5.37)		(15.36)	(6.32)	
VIII	red crystalline	C44H43O2P4V	67.6	6.0	_	15.4	6.6	
	powder	(778.68)	(67.87)	(5.57)		(15.91)	(6.54)	
IX ^a	red needles	CaaHa3O2PaV	67.5	5.5	_			
		(778.68)	(67.87)	(5.57)				

TABLE 3 ANALYSES AND PROPERTIES OF ISOLATED COMPLEXES

^a C and H values only because of low yields

Preparation of Complexes

 $HV(CO)_n p_m$ $(n = 3, 4; p_m = cp_3, pp_3, p_4)$ (II, III, V-VII). As a typical procedure, a description of the preparation of HV(CO)₃cp₃ is given below.

350 mg $[Et_4N][V(CO)_6]$ [19] (1 mmol) and 660 mg cp₃ (1.05 mmol) dissolved in ca. 100 ml THF were irradiated for four hours. The dark red solution, containing $[Et_4N][V(CO)_4cp_3]$ and $[Et_4N][V(CO)_3cp_3]$ was concentrated to ca. 10 ml by evaporation under vacuum at room temperature, and treated with 20-ml n-heptane. After 15 min of stirring, the pasty or powdery red precipitate was separated from the supernatant solvent by decantation or filtration and (without further purific_lion) dissolved in 4 ml CH₃CN/THF 3/2. This solution was transferred to the silica gel column and chromatographed with THF (ca. 3 ml/min), affording about 150 ml of yellow to orange eluant. The solution was allowed to stand at room temperature for two days, then concentrated to 20 ml, treated with an equal volume of heptane, and kept at 250 K for several days. Orange crystals separated out, and these were filtered off and dried under high vacuum (4 hours). From the concentrated filtrate, further product was obtained by addition of excess heptane.

For preparation of the disubstituted complexes $HV(CO)_4p_m$, pure *cis*-[Et₄N]-[V(CO)₄ p_m] has to be used as starting material. The hydrido complex is precipitated with heptane immediately after elution from the column. The compounds isolated usually contain small amounts of $HV(CO)_3p_m$.

cis-HV(CO)₂pp₃ (VIII). A solution of 400 mg $[Et_4N][V(CO)_6]$ (1.15 mmol) and 800 mg pp₃ (1.2 mmol) in 100 ml THF was irradiated for 2 hours. The solution, which contained $[V(CO)_4pp_3]^-$ and $[V(CO)_3pp_3]^-$, was concentrated to 5 ml, transferred to a silica gel column and chromatographed with ca. 100 ml THF. The eluant $[HV(CO)_4pp_3]$ and $HV(CO)_3pp_3]$ was transferred back to the irradiation apparatus, irradiated for 1 hour and treated with 10 ml heptane. After standing for one hour, the solution was filtered and the filtrate evaporated to 15 ml, whereupon VIII precipitated.

trans- $HV(CO)_{2}p_{4}$ (IX). The preparation of IX is carried out as described for

VIII. However, the product obtained by concentration of the THF/heptane solution was impure. Red needles of pure $HV(CO)_2p_4$ were formed in the mother liquor after standing at room temperature for one day, and these were filtered off and dried under high vacuum.

 $\{HV(CO)_4\}_{2\mu}-p_4$ (IV). A suspension of 150 mg $[Et_4N]_{2n}[\{V(CO)_4\}_{2n}-(\mu-p_4)_n]$ in a mixture of 10 ml t-BuCl, 5 ml n-heptane and 15 ml H₂O (oxygen-free) was stirred magnetically for 3 hours. The yellow precipitate was filtered off, washed with 5 ml heptane and 5 ml water, and dried under high vacuum.

 $[Et_4N][\eta^5-C_5H_5VH(CO)_3]$ (I). A solution of 3.4 g Na₂[$\eta^5-C_5H_5V(CO)_3$] (13.8 mmol) (obtained by reduction of 4 g $\eta^5-C_5H_5V(CO)_4$ [15]) in 20 ml CH₃CN was treated with a solution of 4.7 g [Et₄N]Cl (28.5 mmol) in 20 ml CH₃CN. The mixture was stirred magnetically overnight to afford a dark brown solution and a grey precipitate. The solution was filtered, and the filtrate evaporated to dryness at room temperature to yield yellow I. This was washed with two 25 ml portions of oxygen-free water and dried under high vacuum (6 hours). I is slightly soluble in THF and readily soluble in CH₃CN, in which it slowly decomposes.

Acknowledgement

We thank Mr. Dipl.-Phys. K. Paulsen, Chemistry Department, University of Hamburg, for computation of the ¹H NMR spectra.

References

- 1 M. Schneider and E. Weiss, J. Organometal. Chem., 73 (1974) C7.
- 2 U. Franke and E. Weiss, J. Organometal. Chem., 152 (1978) C19.
- 3 R.J. Kinney, W.D. Jones and R.G. Bergman, J. Amer. Chem. Soc., 100 (1978) 635.
- 4 W. Hieber, E. Winter and E. Schubert, Chem. Ber., 95 (1962) 3070.
- 5 J.E. Ellis and R.A. Faltynek, J. Organometal. Chem., 93 (1975) 205.
- 6 A. Davison and J.E. Ellis, J. Organometal. Chem., 36 (1972) 131.
- 7 U. Puttfarcken and D. Rehder, J. Organometal. Chem., 157 (1978) 321.
- 3 P. Meakin, L.J. Guggenberger, F.N. Tebbe and J. Jesson, Inorg. Chem., 13 (1974) 1025.
- 9 S. Datta and S.S. Wreford, Inorg. Chem., 16 (1977) 1134.
- 10 S. Datta, B. Dezube, J.K. Kouba and S.S. Wreford, J. Amer. Chem. Soc., 100 (1978) 4404.
- 11 B.D. Dombeck and R.J. Angelici, Inorg. Chem., 15 (1976) 2397.
- 12 A.M. Bond, R. Colton and J.J. Jackowski, Inorg. Chem., 14 (1975) 2526.
- 13 T. Greiser, U. Puttfarcken and D. Rehder, J. Trans. Met. Chem., 4 (1979) 168.
- 14 E.O. Fischer and R.J.J. Schneider, Angew. Chem., 79 (1969) 537.
- 15 E.O. Fischer and R.J.J. Schneider, Chem. Ber., 103 (1970) 3684.
- 16 G.M. Whitesides and H.L. Mitchell, J. Amer. Chem. Soc., 91 (1969) 2245.
- 17 J.W. Faller, A.S. Anderson and Chin-Chun Chen, J. Chem. Soc. Chem. Commun., (1969) 719.
- 18 D. Rehder and U. Puttfarcken, J. Organometal. Chem., 184 (1980) 343.
- 19 D. Rehder, L. Dahlenburg and I. Müller, J. Org. nometal. Chem., 122 (1976) 53.
- 20 I. Müller and D. Rehder, J. Organometal. Chem., 139 (1977) 293.
- 21 D. Rehder, W.L. Dorn and J. Schmidt, Trans. Met. Chem., 1 (1976) 74; D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36 (1974) 333.
- 22 T.G. Appleton, M.A. Bennett and I.B. Tomkins, J. Chem. Soc. Dalton Trans., (1976) 439.
- 23 D.E. Edwards and J. Marshalsea, J. Organometal. Chem., 96 (1975) C50.
- 24 S.O. Grim, W.L. Briggs, R.C. Barth, C.L. Tobnan and J.P. Jesson, Inorg. Chem., 13 (1974) 1095.
- 25 P.E. Garrou, Inorg. Chem., 14 (1975) 1435.
- 26 D. Rehder, W.L. Dorn and J. Schmidt, Trans. Met. Chem., 1 (1976) 233.
- 27 R.B. King and J.C. Cloyd, Jr., Inorg. Chem., 14 (1975) 1550; D.L. DuBois and D.W. Meek, Inorg. Chem., 15 (1976) 3076; R. Mason and D.W. Meek, Angew. Chem., 90 (1978) 195.
- 28 R.B. King and P.N. Kapoor, J. Amer. Chem. Soc., 93 (1971) 4158.